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本日の内容

1. 線形確率モデル

2. 2値プロビット・モデル

3. 限界効果

4. 実証分析例
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ダミー変数を被説明変数とするモデル

▶ 大きさ nの 2変量無作為標本
((y1, x1), (y2, x2), · · · , (yn, xn))を用いて，yi を xi
に回帰することを考える．

▶ ただし，yiは 0または 1の値をとるダミー変
数．例えば，

▶ （個人が）働くなら 1，働かないなら 0．
▶ （個人が）チームを移籍するなら 1，しないなら 0．
▶ （企業が）市場に参入するなら 1，しないなら 0．
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線形確率モデル

yi をダミー変数とすると，線形確率モデル（linear
probability model）は，

yi = β0 + β1xi + ui,

E(ui | xi) = 0.

⇓
被説明変数がダミー変数の場合に線形回帰モデルを
仮定すると，線形確率モデルとなる．
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線形確率モデルの問題点

▶ 被説明変数の値が 1になる確率を予測すると，
0を下回ったり 1を上回ったりする．

▶ 誤差項に不均一分散が発生する．
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条件付き期待値と予測値
線形確率モデルの OLS推定量 β̂0と β̂1を元の式に
代入し，誤差項 ui を除くと，

ŷi = β̂0 + β̂1xi,

という式で被説明変数 yi の値を予測できる．
▶ ŷi は yi の予測値．
▶ ŷi は「xi がこの値のときに yi はどのような値
になる傾向があるか」を表す．

⇒ ŷi は，xi を所与とした yi の条件付き期待値

E(yi | xi) = β0 + β1xi,

を予測したものと解釈できる．
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線形確率モデルにおける条件付き期待値
yi がダミー変数なら，

E(yi | xi) = 0 · Pr(yi = 0 | xi) + 1 · Pr(yi = 1 | xi)
= Pr(yi = 1 | xi).

⇓
「yi の条件付き期待値」が「yi の値が 1になる条件
付き確率」と同じになる．
å ŷi を計算すると，「yi の値が 1になる条件付き確
率」を予測していることになる．
å ŷi,すなわち「yi の値が 1になる条件付き確率の
予測値」は 0を下回ったり 1を上回ったりする
（問題）．
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線形確率モデルの誤差項の分散

yi がダミー変数なら，

V(ui | xi) = (β0 + β1xi) [1 − (β0 + β1xi)] .

（証明は省略）
⇓

誤差項 ui の分散が説明変数 xi に応じて変化する．
å不均一分散発生（問題）．
▶ 仮説検定の際に，不均一分散に対して頑健な標
準誤差を用いることで，ある程度対処可能．
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⇓
これらの問題を解決するには，2値応答モデルを仮
定する．
▶ 観測不可能な変数で，被説明変数の値を決定づ
ける変数を潜在変数（latent variable）という．
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2値応答モデル（binary response model）は，

yi =

{
1 if y∗i > 0,
0 otherwise,

y∗i = β0 + β1xi + ui,

ui | xi ∼ F(.).

y∗i は潜在変数で，yi の値を決定づける．
▶ 観測可能：yi, xi

▶ 観測不可能：y∗i , β0, β1, ui

▶ 推定するもの：β0, β1
各変数，パラメータを図示すると？
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▶ 誤差項 uiには，説明変数 xiを所与とした条件
付き分布を仮定する．

▶ e.g.,標準正規分布

▶ 誤差項の条件付き分布を標準正規分布と仮定
した 2値応答モデルを 2値プロビット・モデル
（binary probit model）という．

※ “yi = · · ·”の式ではなく “y∗i = · · ·”の式の誤差項
の分布を仮定している．

13 / 32



2値プロビット・モデルの定式化
2値プロビット・モデルは，

yi =

{
1 if y∗i > 0,
0 otherwise,

y∗i = β0 + β1xi + ui,

ui | xi ∼ N(0, 1).

⇓
最尤（maximum likelihood）法を用いて，β0と β1を
推定する．
（導出方法は付録参照）
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2値プロビット・モデルの別の表現

2値プロビット・モデルの別の表現は，

Pr(yi = 1 | xi) = Φ(β0 + β1xi).

Φ(.)は標準正規分布の累積分布関数．
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2値プロビット・モデルが

Pr(yi = 1 | xi) = Φ(β0 + β1xi),

と書ける理由は以下の通り．
xi を所与として，yi = 1となる条件付き確率は，

Pr(yi = 1 | xi) = Pr(y∗i > 0 | xi)
= Pr(β0 + β1xi + ui > 0 | xi)
= Pr (ui > −(β0 + β1xi) | xi) .

標準正規分布は 0で対称な分布なので，

Pr (ui > −(β0 + β1xi) | xi) = Pr (ui < β0 + β1xi | xi) .
よって，

Pr(yi = 1 | xi) = Pr (ui < β0 + β1xi | xi)
= Φ(β0 + β1xi).
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限界効果
定数項以外に説明変数が 1つの 2値プロビット・モ
デルにおける，xi の限界効果（marginal effect）は，

∂Pr(yi = 1 | xi)
∂xi

=
∂Φ(β0 + β1xi)

∂xi

= ϕ(β0 + β1xi)β1.

ϕ(.)は標準正規分布の確率密度関数．

⇓

β1そのものではなく ϕ(β0 + β1xi)β1が，「xi が 1単
位増加したときに yi = 1となる確率がどの程度変化
する傾向があるか」を表す．
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▶ ϕ(.)は確率密度関数なので 0以上．
⇒限界効果の符号は β1の符号と同じ．

▶ 説明変数 xi の値は各個体によって異なる．
å限界効果

∂P(yi = 1 | xi)
∂xi

= ϕ(β0 + β1xi)β1,

の値も各個体によって異なる．
⇒説明変数 xi をその平均 x̄で置き換えた，平
均における限界効果を計算する．
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▶ 定数項以外に説明変数が 1つの 2値プロビッ
ト・モデルの，平均における限界効果
（marginal effect at the mean）は，

ϕ(β̂0 + β̂1 x̄)β̂1.

▶ β̂0, β̂1はそれぞれ β0, β1を最尤法で推定した値
（最尤推定値）．

▶ x̄ =
1
n

n∑
i=1

xi .

▶ 定数項以外に説明変数が複数個ある場合は，それ
らを全てそれぞれの標本平均で置き換える．
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線形確率モデルを適用すべき場合

以下の場合は被説明変数 yi がダミー変数であって
も線形確率モデルを仮定して推定する．
▶ モデルの右辺に交差項（変数の積）を含み，そ
の係数を解釈したい場合．

▶ e.g., yi = β0 + βX xi + βZ zi + βXZ xizi + ui のような線
形確率モデルを推定．

▶ パネルデータを用いて固定効果モデルを仮定
したい場合．

▶ e.g., yit = β0 + β1xit + µi︸︷︷︸
個別効果

+ εit︸︷︷︸
その他効果

のような線

形確率モデルを推定．
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gretlでの限界効果推定

2値プロビット・モデルの場合は，
▶ メニューバーから「モデル」→「制限従属変数」
→「プロビット」→「二項 (Binary)」と操作．

▶ ラジオボタンの中から「平均での限界効果
（slope at mean）を表示する」を選ぶ．

⇒出力結果に各説明変数の，「平均における限界効
果」が表示される．

21 / 32



gretlでは，平均における限界効果を出力すると p値
および有意性を示すアスタリスク記号が出力され
ない．

⇓
メニューバーから「モデル」→「制限従属変数」→
「プロビット」→「二項 (Binary)」と操作して出てく
るウィンドウで，「p値を表示する」を選んだ結果と
「平均での限界効果（slope at mean）を表示する」
を選んだ結果の両方を出力して，前者の結果から p
値とアスタリスク記号の個数を確認し，後者の結果
から限界効果を確認するとよい．
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gretlで 2値プロビット・モデルを推定す
る場合の頑健標準誤差

▶ gretlで 2値プロビット・モデルを推定する場
合，「頑健標準誤差を使用する」にチェックを
入れると，不均一分散に対してではなく，モデ
ルの定式化に対して頑健な標準誤差が計算さ
れる．
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実証分析例：女性の労働供給関数の推定
配偶者のいる女性 1053人分のデータを用い，以下
の 2値プロビット・モデルを推定し，各説明変数の
限界効果を推定する．

worki =

{
1 if work∗i > 0,
0 otherwise,

work∗i =β0 + β1income_si

+ β2childu6i + ui,

ui | income_si, childu6i ∼N(0, 1).

この 2値プロビット・モデルの別の表現は，

Pr(worki = 1 | income_si, childu6i)
= Φ(β0 + β1income_si + β2childu6i).
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▶ worki: 労働ダミー
▶ 働いている＝ 1
▶ 働いていない＝ 0

▶ income_si: 配偶者の所得（単位：万円）

▶ childu6i: 6歳以下子どもダミー
▶ 6歳以下の子どもがいる＝ 1
▶ 6歳以下の子どもがいない＝ 0

▶ Φ(.): 標準正規分布の累積分布関数
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2値プロビット・モデル推定結果（1）
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2値プロビット・モデル推定結果（2）
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▶ 配偶者の所得の係数
▶ −0.000589132.
▶ z値は −3.453, p値は 0.0006.

å仮に「income_sの係数が 0」だとすると，
−3.453という z値は 0.06%の確率（1%を下回る確
率）でしか出てこない．
å有意水準 1%で，「係数は 0」の H0が棄却され
る（5%や 10%でも棄却される）．
å配偶者（夫）の所得は労働ダミーが 1になる確
率（女性本人が働く確率）と統計的に有意に相関
している．

▶ 配偶者の所得の限界効果
▶ −0.000231735.

å 6歳以下の子どもの有無を一定としたうえで，
配偶者（夫）の所得が 1万円高くなると，労働ダ
ミーが 1になる確率（女性本人が働く確率）が平
均的に 0.000231735低くなる（0.0231735パーセ
ントポイント低くなる）傾向がある．
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▶ 6歳以下子どもダミーの係数
▶ −0.521817.
▶ z値は −6.567, p値は 5.13 × 10−11.

å仮に「childu6の係数が 0」だとすると，−6.567
という z値は 5.13 × 10−11,つまりほぼ 0%の確率
（1%を下回る確率）でしか出てこない．
å有意水準 1%で，「係数は 0」の H0が棄却され
る（5%や 10%でも棄却される）．
å 6歳以下の子どもの有無は労働ダミーが 1にな
る確率（女性本人が働く確率）と統計的に有意に
相関している．

▶ 6歳以下子どもダミーの限界効果
▶ −0.202908.
※ ダミー変数の，平均における限界効果の解釈には
意味がなく，別の方法でダミー変数の限界効果を
求める必要がある（詳細な説明は省略）．
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▶ 定数項
▶ 0.707121.
▶ z値は 6.936, p値は 4.04 × 10−12.

å仮に「定数項が 0」だとすると，6.936という z
値は 4.04 × 10−12,つまりほぼ 0%の確率（1%を下
回る確率）でしか出てこない．
å有意水準 1%で，「係数は 0」の H0が棄却され
る（5%や 10%でも棄却される）．
å定数項は統計的に有意に 0と異なる．

※ 定数項に限界効果は存在しない．
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今日のキーワード

線形確率モデル，潜在変数，2値応答モデル，2値
プロビット・モデル，限界効果，平均における限界
効果
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次回（期末試験）までの準備

▶ これまでの講義スライドを読み直す．

▶ これまでの提出課題の問題の解答や解説を確
認する．

▶ 「提出課題 11」に取り組む．

▶ これまでの各回の「今日のキーワード」に登場
した専門用語の定義を覚える．
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付録：2値プロビット・モデルの推定方
法

xi を所与として，yi = 1となる条件付き確率は，

Pr(yi = 1 | xi) = Pr(y∗i > 0 | xi)
= Pr(β0 + β1xi + ui > 0 | xi)
= Pr (ui > −(β0 + β1xi) | xi) .

標準正規分布は 0で対称な分布なので，

Pr (ui > −(β0 + β1xi) | xi) = Pr (ui < β0 + β1xi | xi) .
よって，

Pr(yi = 1 | xi) = Pr (ui < β0 + β1xi | xi)
= Φ(β0 + β1xi).
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Φ(.)は標準正規分布の累積分布関数．
▶ 前スライドの式では，

Φ(β0 + β1xi) =
∫ β0+β1xi

−∞

1
√

2π
exp

(
− z2

2

)
dz.

また，xi を所与として，yi = 0となる条件付き確
率は，

Pr(yi = 0 | xi) = 1 − Pr(yi = 1 | xi)
= 1 − Φ(β0 + β1xi).
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よって，xi を所与とした yi の条件付き確率質量関
数は，

f (yi | xi; β0, β1) =


Φ(β0 + β1xi) for yi = 1,
1 − Φ(β0 + β1xi) for yi = 0,
0 elsewhere

= [Φ(β0 + β1xi)]yi [1 − Φ(β0 + β1xi)]1−yi .
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無作為標本なので y1, y2, · · · , ynは互いに独立．
x1, x2, · · · , xnを所与とした，y1, y2, · · · , ynの同時確
率質量関数は，

f (y1, y2, · · · , yn | x1, x2, · · · , xn; β0, β1)

=
n∏

i=1
f (yi | x1, x2, · · · , xn; β0, β1)

=
n∏

i=1
f (yi | xi; β0, β1)

=
n∏

i=1
[Φ(β0 + β1xi)]yi [1 − Φ(β0 + β1xi)]1−yi .
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尤度関数（likelihood function）は，

L(β0, β1; y1, y2, · · · , yn, x1, x2, · · · , xn)

=
n∏

i=1
[Φ(β0 + β1xi)]yi [1 − Φ(β0 + β1xi)]1−yi .

対数尤度関数（log-likelihood function）は，

ln L(β0, β1; y1, y2, · · · , yn, x1, x2, · · · , xn)

=
n∑

i=1

[
yi ln {Φ(β0 + β1xi)}

+ (1 − yi) ln {1 − Φ(β0 + β1xi)}
]
.

これが最大になるような β0と β1を求める．
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ML問題は，

max
β0,β1

n∑
i =1

[
yi ln {Φ(β0 + β1xi)}

+ (1 − yi) ln {1 − Φ(β0 + β1xi)}
]
.

(β0, β1)の最尤推定量（maximum likelihood
estimator, MLE）を (β̂0, β̂1)とする．
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1階条件は，
∂ ln L
∂β0

= 0

⇔
n∑

i=1

[
yi

Φ(β̂0 + β̂1xi)
· dΦ(β̂0 + β̂1xi)

dz

− 1 − yi

1 − Φ(β̂0 + β̂1xi)
· dΦ(β̂0 + β̂1xi)

dz

]
= 0

⇔
n∑

i=1

[
yiϕ(β̂0 + β̂1xi)
Φ(β̂0 + β̂1xi)

− (1 − yi)ϕ(β̂0 + β̂1xi)
1 − Φ(β̂0 + β̂1xi)

]
= 0

⇔
n∑

i=1

[
(yi − Φ(β̂0 + β̂1xi))ϕ(β̂0 + β̂1xi)
Φ(β̂0 + β̂1xi)(1 − Φ(β̂0 + β̂1xi))

]
= 0, (1)
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∂ ln L
∂β1

= 0

⇔
n∑

i=1

[
yi xi

Φ(β̂0 + β̂1xi)
· dΦ(β̂0 + β̂1xi)

dz

− (1 − yi)xi

1 − Φ(β̂0 + β̂1xi)
· dΦ(β̂0 + β̂1xi)

dz

]
= 0

⇔
n∑

i=1

[
yi xiϕ(β̂0 + β̂1xi)

Φ(β̂0 + β̂1xi)
− (1 − yi)xiϕ(β̂0 + β̂1xi)

1 − Φ(β̂0 + β̂1xi)

]
= 0

⇔
n∑

i=1

[
(yi − Φ(β̂0 + β̂1xi))xiϕ(β̂0 + β̂1xi)
Φ(β̂0 + β̂1xi)(1 − Φ(β̂0 + β̂1xi))

]
= 0. (2)
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ϕ(.)は標準正規分布の確率密度関数．
▶ (1)と (2)において，

ϕ(β̂0 + β̂1xi) =
1

√
2π

exp
(
−(β̂0 + β̂1xi)2

2

)
.

(1)と (2)からなる連立方程式は解析的に解けない．

⇓

コンピューターを用いて数値的に解き，(β̂0, β̂1)を
求める．
※ 定数項以外に説明変数が複数ある場合も同様
に求めることができる．
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